Extreme Engineered Material Design
| টেক্সটাইল| লিখেছেন | Leave a reply | |||||||||||||||||||||||||||||||||||||||||||||||||
Saturday, 10 July 2010 | |||||||||||||||||||||||||||||||||||||||||||||||||
Dedicated to: Dr. Palitha Bandara, School of Design, University of Leeds, Leeds, UK. Technically advanced materials have sophisticated physical properties and functional features. Scientists have pioneered the investigation of producing high performance fibrous materials. Recent advances in bio, nano and textile technology presented enormous opportunities for developing engineered materials for challenging applications with critical performance requirements. This research article sheds on light on the critical physical properties of high performance materials and our endeavors and progresses in perspective to design lighter, stronger, tougher and safer materials. Textile material touches our life many ways. They are used today to replace corrosive heavy metals for high performance applications and extended life cycle. Specialty fibrous materials exhibit specific physical properties and functional features. For challenging applications and environment, scientists and technologists predict, analyze, combine and optimize structure-performance-property interrelationships for developing engineered materials with critical performance requirements. Table 1: Properties of selected high performance fibrous materials.
SWNT: Single Wall NanoTube. UHMWPE: Ultra High Molecular Weight Polyethylene. PBO: Poly-para-phenylene bisoxazole. Density or specific gravity, refers to how light/heavy is the material. The density of water is 1 g/cm3. Strength = Load required to break the material. Modulus = Resistance energy to extension. 1 GPa = 100kg/mm2. Designing extreme engineered materials is far more complex than ever. To simplify the process, we have considered here three critical mechanical properties of materials: density, strength and modulus among the other specialty physical properties of these fibrous assemblies. Note that not all fibers are suitable for all challenging applications. Each fiber has its distinct property for its niche application. Table 1 presents the physical properties of selected high performance materials. To design and develop extreme engineered materials, we primarily combine high strength-to-weight (strength and density) ratio and resistance energy to extension (modulus). Table 1 highlights:
Stay tuned! More to come.... Acknowledgements: TexTek Solutions & MW Canada. Interesting References: 2011 Airship Technology> Materials> S Islam et al., Cambridge University Press, UK - In Press 2010 Vectran Fiber: A Unique Combination of Propoerties for the Most Demanding Applications: http://www.vectranfiber.com/engineering_introduction.asp, Jul 10 2010 Carbon Nanotube, Wikipedia, Jul 10 2010 [PDF] KEVLAR® technical guide - DuPont. The miracles of Science™; Jul10 2010 Physical Properties of Carbon Nanotubes, pa.msu.edu/cmp/csc/ntproperties, Jul 08 2010 Super Strong NanoCrystalline Cellulose Synthesis: Challenges and Opportunities, S Islam, biggani.org, Jul 04 2010 Sizing Nanoparticles - Determining the Particle Size of Nanomaterials by Micromeritics, AZoNano.com, Jul 02 2010 Biosensing with Nanotubes, J G Shapter, AZoNano.com, Jul 01 2010 Progress and Perspectives in the Carbon Nanotube World, M Endo, AZoNano.com, Jun 23 2010 Soft Capacitor Fibers Using Conductive Polymers for Electronic Textiles, J F Gu, S Gorgutsa, M Skorobogatiy, Jun 26 2010 Complete Analysis of Nanomaterials in Textile Textile Industry, Nanomaterials, Reportlinker.com 2010 Iridescent Solid NanoCrystalline Cellulose Films Incorporating Patterns and Medthod for Their Production, S Beck, J Bouchard, R Berry, USP 2010/0151159 A1, Jun 17 2010 Striking New Details About the Electronic Structure of Graphene, Graphene, May 20 2010 Conductivity Trends of PEDOT-PSS Impregnated Fabric and the Effect of Conductivity on Electrochromic Textile, Y Ding, M A Invernale, G A Sotzing, ACS Applied Materials & Interfaces, Vol. 2, No. 6, 1588-1593, May 18 2010 Technical Interactions, R Berry, FP Innovations, Montreal, Canada. 2010 Parameters Affecting the Chiral Nematic Phase of NanoCrystalline Cellulose Films, J Pan, W Hamad, S K Straus, Macromolecules, 43, 3851-3858 2009 Canada Strikes Nanotech Gold, R Lombardi, Canadian Business Online, Oct 13 2009 New Wood-Fibre Product Holds Promise for Forestry Industry, Edmonton Journal, Jun 25 2009 A Technique for Production of Nanocrystalline Cellulose with a Narrow Size Distribution, W Bai, J Holbery, K Li, Cellulose, 16, 455-465 2006 Carbon Nanotubes: Next Generation of Electronic Materials, J Seetharamappa, S Yellapa, F D'Souza, Electrochemical Society Interface, Summer 2006 Cellulose NanoCrystals Make Plastic 3,000 Times Stronger, Nanowerk News, Oct 19 2006 Methods and apparatus for spinning spider silk protein, S Islam et al., USP 7,057,023 Jun 6 2005 High-toughness Spider Silk Fibers Spun from Soluble rc-Silk Produced in Mammalian Cells, C Karatzas, S Islam et al., Biotechnology of Biopolymers: From Synthesis to Patents, 2 Volumes, Germany 945-966 2005 Nanotech Changes Everything, R Spence, Canadian Business Online, Jul 25 2005 Value-added Textile Technology, S Islam, Textile Excellence J., Anniversary Issue, Jul. 3(1) 55-56 2005 [PDF] TOYOBO CO., LTD.: www.toyobo.co.jp/e/seihin/kc/pbo/Technical_Information_2005.pdf Extreme Engineered Material Designশফিউল ইসলাম ইমেইল: shafiul_i@yahoo.com :: ওয়েবঃ textek.weebly.com :: Canada :: www.linkedin.com/in/shafiul2009 |
Extreme Engineered Material Design: http://biggani.com/content/view/1368/158/
No comments:
Post a Comment